

THREE FLAVONOL GLYCOSIDES FROM *EPIMEDIUM KOREANUM*

YUJI ITO, FUSAYOSHI HIRAYAMA, KEIICHI SUTO, KAZUHIKO SAGARA and TSUGUCHIKA YOSHIDA

Research Center, Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-cho, Omiya-shi, Saitama 330, Japan

(Revised received 23 June 1987)

Key Word Index—*Epimedium koreanum*; Berberidaceae; flavonol glycosides; icariin; 2D NMR.

Abstract—Three new flavonol glycosides: 4'-methoxy-5-hydroxy-8-3,3-dimethylallylflavone 3-glycosyl(1→2)rhamnoside-7-glucoside, 3-xylosyl(1→2)rhamnoside-7-glucoside and 3-rhamnosyl(1→2)rhamnoside-7-glucoside and icariin were characterized from the aerial parts of *Epimedium koreanum*.

INTRODUCTION

Plants of the genus *Epimedium* (Berberidaceae) are well known as a tonic in Japan and China. It has been reported that *E. grandiflorum* Morr. contains several flavonol glycosides such as icariin [1-4] in the aerial parts and epimedoside A-E [5-8] in the underground parts, whereas *E. koreanum* Nakai contains icariin and epimedoside A [9] in the underground parts. Recently, we have investigated a number of *Epimedium* species [10, 11] and isolated three new flavonol glycosides together with icariin from the aerial parts of *E. koreanum*. This paper describes the structural investigation of these glycosides.

RESULTS AND DISCUSSION

Three new flavonol glycosides (**1-3**) and icariin were isolated from the aerial parts of *E. koreanum* by repeated preparative HPLC of the *n*-butanol fraction.

Compound **1** was obtained as an amorphous solid, $C_{39}H_{50}O_{20}$, FABMS m/z : 839 $[M+1]^+$. Upon acid hydrolysis, **1** gave the same aglycone as that of icariin, i.e.

4'-methoxy-3,5,7-trihydroxy-8-3,3-dimethylallylflavone (**4**), glucose and rhamnose. The FABMS of **1** showed peaks at m/z 839, 677, 531 and 369, which were ascribed respectively to $[M+1]^+$, $[M+1-162]^+$, $[M+1-162-146]^+$ and $[M+1-162 \times 2-146]^+$ ions, suggesting the presence of one rhamnose and two glucose moieties in the molecule. The UV spectrum of **1** (see Experimental) was similar to and gave the same shifts as that of icariin, indicating that the sugars were attached to the aglycone at C-3 and C-7. The FABMS and UV data showed that one glucose and one rhamnose were attached at C-3 and C-7, and another glucose was attached to one of these two sugars.

The unambiguous assignments of 1H NMR (400 MHz in CD_3OD) and ^{13}C NMR (100 MHz in CD_3OD) signals of **1** were achieved on the basis of combinations of one-dimensional (1D) and two-dimensional (2D) NMR techniques, such as INEPT, $^1H-^1H$ COSY or $^1H-^{13}C$ COSY. They were especially useful in deciding the position of attachment of the terminal sugar. The results are presented in Table 1 (1H NMR) and Table 2 (^{13}C NMR). Three signals derived from anomeric protons

Table 1. 1H NMR spectral data for the flavonol glycosides, **1-3**

H	1	2	3
6	6.66 s	6.62 s	6.65 s
12	5.19 t (6.0)	5.17 t (6.0)	5.19 t (5.9)
14	1.64 s	1.64 s	1.64 s
15	1.72 s	1.72 s	1.72 s
2',6'	7.86 d (9.0)	7.81 d (9.0)	7.82 d (9.0)
3',5'	7.09 d (9.0)	7.05 d (9.0)	7.04 d (9.0)
OMe	3.90 s	3.88 s	3.88 s
Glc-1	5.07 d (7.3)	5.06 d (6.8)	5.08 d (7.3)
Rha-1	5.72 d (1.5)	5.43 d (2.0)	5.52 d (1.5)
Rha-2	4.31 dd (1.5, 3.4)	4.22 dd (2.0, 3.5)	4.30 dd (1.5, 3.2)
Rha-6	0.93 d (5.6)	0.99 d (5.6)	0.94 d (5.9)
Terminal	Glc-1 4.44 d (7.8)	Xyl-1 4.31 d (7.6)	Rha-1 5.03 d (1.5) Rha-6 1.22 d (6.1)

400 MHz, CD_3OD , TMS as int. standard, J (Hz) in parentheses.
Glc = glucose, Rha = rhamnose, Xyl = xylose.

Table 2. ^{13}C NMR spectral data for the flavonol glycosides, **1**–**3**

C	1	2	3
2	155.89	155.72	155.71
3	137.56	137.74	137.33
4	180.87	180.83	180.68
5	162.95	162.75	162.75
6	100.40	100.33	100.30
7	161.74	161.66	161.63
8	108.49	108.39	108.37
9	160.22	159.81	159.82
10	111.59	114.45	112.76
11	23.57	23.56	23.54
12	124.35	124.43	124.35
13	133.50	133.40	133.41
14	26.59	26.58	26.58
15	19.08	19.10	19.10
1'	124.72	124.60	124.55
2',6'	132.73	132.56	132.55
3',5'	116.08	115.97	115.97
4'	164.39	164.22	164.19
OMe	56.90	56.89	56.87
Glucose			
1	102.89	102.83	102.82
2	75.78	75.72	75.69
3	79.15	79.03	78.90
4	72.11	72.05	72.02
5	79.15	79.03	78.90
6	63.32	63.28	63.26
Rhamnose			
1	103.45	103.86	103.12
2	83.22	83.13	79.62
3	72.78	72.75	72.79
4	74.34	74.43	74.28
5	72.69	72.60	72.72
6	18.41	18.43	18.53
Terminal	Glucose	Xylose	Rhamnose
1	107.77	108.29	104.35
2	76.21	75.98	72.72
3	78.77	78.56	73.08
4	71.96	71.73	74.74
5	78.77	67.80	71.05
6	63.32		18.61

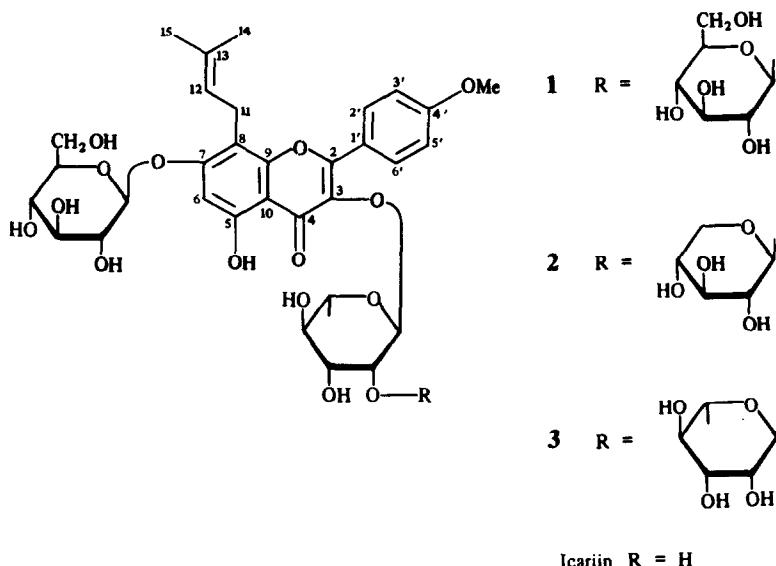
100 MHz, CD_3OD , TMS as int. standard.The chemical shifts were assigned on the basis of ^1H – ^{13}C COSY spectra.

were observed in the ^1H NMR spectrum of **1** (Table 1). The signal at 5.07 ppm was assigned to the H-1 glucose attached to the aglycone and the diaxial coupling ($J = 7.3$ Hz) between the H-1 glucose and H-2 glucose indicated the β -configuration. Similarly, the signals at 4.44 ppm ($J = 7.8$ Hz) and 5.72 ppm ($J = 1.5$ Hz) were assigned to the H-1 terminal glucose (β -configuration) and H-1 rhamnose (α -configuration), respectively. Furthermore, the 2D NOESY spectrum of **1** showed the NOE between the H-1 of the glucose attached to the aglycone (5.07 ppm) and the H-6 of the aglycone (6.66 ppm), which indicated that one glucose and one rhamnose were attached to the aglycone at C-7 and C-3, respectively. The ^{13}C NMR spectrum of **1** (Table 2) gave a downfield shift (83.22 ppm) of the C-2 rhamnose from the corresponding chemical shift value [12], suggesting that

the terminal glucose was attached at C-2 of the rhamnose. On the basis of these data, **1** was identified as 4'-methoxy-5-hydroxy-8-3,3-dimethylallylflavone 3-O- β -D-glucopyranosyl (1 \rightarrow 2)- α -L-rhamnopyranoside-7-O- β -D-glucopyranoside.

Compound **2** was obtained as an amorphous solid, $\text{C}_{38}\text{H}_{48}\text{O}_{19}$, FABMS m/z : 809 [M + 1] $^+$. Acid hydrolysis of **2** gave the same aglycone (**4**) as in **1**, glucose, rhamnose and xylose. The FABMS and UV data of **2** showed that one glucose and one rhamnose were attached at C-3 and C-7, respectively, and one xylose was attached to either of these two sugars. The ^1H NMR spectrum of **2** (Table 1) gave three signals from anomeric protons at 4.31 ppm ($J = 7.6$ Hz), 5.06 ppm ($J = 6.8$ Hz) and 5.43 ppm ($J = 2.0$ Hz), which were assigned to H-1 xylose (β -configuration), H-1 glucose (β -configuration) and H-1 rhamnose (α -configuration), respectively. The NOE between H-1 of the glucose and H-6 of the aglycone indicated that the glucose was attached to the aglycone at C-7. The ^{13}C NMR spectrum of **2** (Table 2) showed a downfield shift (83.13 ppm) of the C-2 rhamnose, suggesting that xylose was attached at C-2 of the rhamnose. Compound **2** is therefore identified as 4'-methoxy-5-hydroxy-8-3,3-dimethylallylflavone 3-O- β -D-xylopyranosyl (1 \rightarrow 2)- α -L-rhamnopyranoside-7-O- β -D-glucopyranoside.

Compound **3** was obtained as an amorphous solid, $\text{C}_{39}\text{H}_{50}\text{O}_{19}$, FABMS m/z : 823 [M + 1] $^+$. Acid hydrolysis of **3** gave the aglycone **4**, glucose and rhamnose. The FABMS and UV data of **3** showed that one glucose and one rhamnose were attached at C-3 and C-7, respectively and another rhamnose was attached to one of these two sugars. The ^1H NMR spectrum of **3** (Table 1) gave three signals from anomeric protons at 5.03 ppm ($J = 1.5$ Hz), 5.08 ppm ($J = 7.1$ Hz) and 5.52 ppm ($J = 1.5$ Hz), which were assigned to the H-1 terminal rhamnose (α -configuration), H-1 glucose (β -configuration) and H-1 rhamnose (α -configuration), respectively. The NOE between H-1 of the glucose and H-6 of the aglycone indicated that the glucose was attached to the aglycone at C-7. The ^{13}C NMR spectrum of **3** (Table 2) showed a downfield shift (79.62 ppm) of the C-2 rhamnose attached to the aglycone, suggesting that the terminal rhamnose was attached at C-2 of the first rhamnose.


From these data, **3** is characterized as 4'-methoxy-5-hydroxy-8-3,3-dimethylallylflavone 3-O- α -L-rhamnopyranosyl (1 \rightarrow 2)- α -L-rhamnopyranoside-7-O- β -D-glucopyranoside.

EXPERIMENTAL

Mps: uncorr. ^1H and ^{13}C NMR spectra were measured with JEOL JNM-GX400 in CD_3OD and the chemical shifts given in δ values (ppm) with TMS as the int. standard. Prep. HPLC was carried out on a C18 column system (Kusano Scientific Co., Tokyo) with ODS-silica (30 μm) as the stationary phase.

Isolation. The dried aerial parts of *E. koreanum* (320 g), purchased from Nippon Funmatsu Yakuhin Co., Ltd, were extracted with H_2O –EtOH (7:3,3) \times 2. The concd extract (1 l) was extracted successively with *n*-hexane, CHCl_3 and *n*-BuOH. The *n*-BuOH fraction (24 g) was subjected to prep. HPLC on ODS-silica with H_2O –MeCN (7:3). Repeated HPLC afforded **1** (30 mg), **2** (50 mg), **3** (100 mg) and icariin (200 mg).

Compound 1. An amorphous solid, mp 180–182° (dec). $[\alpha]_D^{20}$ –106.3° (EtOH; $c = 0.25$). FABMS m/z (%): 839 (M + 1, 1), 677 (1), 531 (35), 369 (100), 313 (55). Calcd. for $\text{C}_{39}\text{H}_{50}\text{O}_{20} \cdot \text{H}_2\text{O}$: C, 54.67; H, 6.12. Found: C, 54.62; H, 6.30%. UV $\lambda_{\text{max}}^{\text{HIOH}}$ nm (log ϵ):

270 (4.41), 314 (4.16); + AlCl_3 : 276 (4.33), 304 (4.15), 336 (4.13); + NaOAc : 270 (4.39), 316 (4.14).

Compound 2. An amorphous solid, mp 172–174° (dec.). $[\alpha]_D^{20} -108.5^\circ$ (EtOH; c 0.47). FABMS m/z (%): 809 (M + 1, 5), 677 (2), 531 (45), 369 (100), 313 (57). Calc. for $\text{C}_{38}\text{H}_{48}\text{O}_{19} \cdot 3/2\text{H}_2\text{O}$: C, 54.61; H, 6.15. Found: C, 54.75; H, 6.12%. UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ϵ): 270 (4.38), 314 (4.13); + AlCl_3 : 280 (4.33), 305 (4.15), 339 (4.17); + NaOAc : 269 (4.36), 315 (4.11).

Compound 3. An amorphous solid, mp 162–164° (dec.). $[\alpha]_D^{20} -104.7^\circ$ (EtOH; c 0.69). FABMS m/z (%): 823 (M + 1, 8), 677 (7), 531 (50), 369 (100), 313 (45). Calc. for $\text{C}_{39}\text{H}_{50}\text{O}_{19} \cdot \text{H}_2\text{O}$: C, 55.71; H, 6.23. Found: C, 55.70; H, 6.45%. UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ϵ): 269 (4.36), 313 (4.10); + AlCl_3 : 280 (4.32), 305 (4.01), 340 (4.17); + NaOAc : 269 (4.33), 315 (4.08).

Icarin. Yellow needles, mp 255–257°. FABMS m/z (%): 677 (M + 1, 15), 531 (45), 369 (100), 313 (45). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ϵ): 269 (4.30), 313 (4.04); + AlCl_3 : 280 (4.27), 304 (4.06), 339 (4.13); + NaOAc : 269 (4.28), 315 (4.01). Icarin was identified by direct comparison with an authentic specimen (HPLC, UV, IR).

Hydrolysis of flavonoids. The glycosides in 25% $\text{H}_2\text{SO}_4\text{-MeOH}$ were refluxed for 4 hr. The concd solns were diluted with H_2O , extracted with CHCl_3 , neutralized with $\text{Ba}(\text{OH})_2$ and evapd.

Identification of sugars and aglycones. The sugar mixture in the H_2O fractions of 1–3 were silylated in the usual way with TMCS and HMDS in $\text{C}_5\text{H}_5\text{N}$ and subjected to GLC (2% OV-1; column temp 150–250°, 10°/min.; detection temp. 300°; N_2 , 50 ml/min.) along with silyl derivatives of standard sugars (R_f : 3.3, 3.8 min for rhamnose; 3.9, 4.4 min for xylose; 5.5, 6.3 min for glucose). Aglycones in the CHCl_3 fractions were subjected to TLC (Merck, silica gel 60 F_{254} , Art. 5715; n -hexane–EtOAc, 1:1) all having

the same R_f of 0.50 and identified as 4, 4'-methoxy-3,5,7-trihydroxy-8,3,3-dimethylallylflavone, by comparison with an authentic sample.

Acknowledgement—We are grateful to Professor Junzo Shoji, School of Pharmaceutical Sciences, Showa University, for helpful advice and discussion.

REFERENCES

1. Akai, S. (1935) *Yakugaku Zasshi* **55**, 537.
2. Akai, S. and Matsukawa, Y. (1935) *Yakugaku Zasshi* **55**, 705.
3. Akai, S. and Nakazawa, K. (1935) *Yakugaku Zasshi* **55**, 719.
4. Akai, S. and Nakazawa, K. (1935) *Yakugaku Zasshi* **55**, 788.
5. Takemoto, T., Daigo, K. and Tokuoka, Y. (1975) *Yakugaku Zasshi* **95**, 312.
6. Tokuoka, Y., Daigo, K. and Takemoto, T. (1975) *Yakugaku Zasshi* **95**, 321.
7. Tokuoka, Y., Daigo, K. and Takemoto, T. (1975) *Yakugaku Zasshi* **95**, 698.
8. Tokuoka, Y., Daigo, K. and Takemoto, T. (1975) *Yakugaku Zasshi* **95**, 825.
9. Xu, S., Wang, Z., Wu, L., Wang, N. and Chen, Y. (1982) *Zhongcaoyao* **13**, 9.
10. Ito, Y., Hirayama, F., Suto, K., Ojima, M., Sagara, K. and Yoshida, T. (1986) The 106th Annual Meeting of Pharmaceutical Society of Japan, April 1986, Abstracts of Papers, p. 172.
11. Ito, Y., Hirayama, F., Suto, K., Ojima, M., Sagara, K. and Yoshida, T. (1986) The 15th Shoyakubunsekitoronkai, July 1986, Abstracts of papers, p. 29.
12. Tanaka, O. (1985) *Yakugaku Zasshi* **105**, 323.